

DRAFT

Science Operations Center System

Software Development Plan

DRAFT

7 September 2001

USNO-FAME-SOC-SDP
Version 0.2

 2

[Signature page placeholder]

 3

[Table of Contents placeholder]

 4

1. Scope

1.1. Identification
This Software Development Plan (SDP) addresses the strategies and tactics for bringing
about the creation of the Full-sky Astrometric Mapping Explorer (FAME) Science
Operations Center (SOC) software.

1.2. System Overview
The purpose of the SOC is to

1. accept data from the NRL Ground Station at Blossom Point, MD,
2. provide real-time visibility into the FAME instrument health and status,
3. archive the raw data stream,
4. produce science data products including a full-sky star catalog.

Figure 1 shows the conceptual diagram for the SOC.

All Data

Data
Ingestion

MOC

Working
Catalog

MAIN
DATA
FEED

DRAFT SOC High Level Conceptual Design v0.2 8/22/01

INGEST
SUBSYSTEM

QUICKLOOK
SUBSYSTEM

DATA ANALYSIS
SUBSYSTEM

All Data

Data
Archiving

Final
Catalog

On-line
Data

Repository

Off-line
Data

Archive

ARCHIVE
SUBSYSTEM

DATA
ANALYSIS
TRENDING
SUBSYSTEM

1. Grid Star Data
2. ~1M Non-Grid Star
Sample Data
3. Instrument and S/C
status
4. Calibration data

Calibration data

1. Star data
2. S/C and instrument
data

PSF characterization information
Background level
Instrument characterization information

Final catalog ouptput

Periodic copies

QL
Catalog

QL PSF
Model

QL
FP Model

PSF Model FP Model

Periodic copies

Figure 1. SOC Conceptual Design

The SOC consists of five subsystems:
1. Ingest

Provides a means whereby the incoming data stream (telemetry) is routed to
the appropriate subsystems.

 5

2. Quick Look
Performs real-time processing of data stream to provide quick visibility into
the science data.

3. Instrument Trending
Provides visibility into the optical focus, focal plane state, etc.

4. Data Archive
Provides secure, long-term storage of the original data stream.

5. Astrometric / Photometric Data Analysis
Handles formation of the high-resolution astrometric and photometric science
products including the full-sky star catalog.

1.3. Document Overview
This document follows the Data Item Description (DID) for Software Development Plans
as described in Mil-Std-498. It deviates from that guideline only in areas where the DID
addresses topics not applicable to the FAME SOC. It is divided into the following parts:
 1. Introduction (Sections 1 – 3)
 2. General and Detailed Plans (Sections 4, 5)
 3. Administration (Sections 6, 7)

1.4. Relationship to Other Plans
This document is a follow-on to the FAME Software Management Plan, v2, 13 Jun 2000,
produced by the FAME Software Management Working Group. It capitalizes on work
done in preparation of that document and expands the concepts to include technology
advances and changes in the operations concept.

2. Referenced Documents
This SDP references these FAME preliminary design documents.

Document Version Date
SOC System Operations Concept v0.2 28 Aug 2001
SOC System Requirements v0.1 TBD
SOC System Preliminary Design TBD TBD
FAME Software Management Plan V2 13 June 2000

3. Overview

The FAME SOC will satisfy the requirements by using a highly modularized
architecture. Modularized code enforces data privacy (no public data) and
communication only through specific module interfaces. This will allow much easier
modification of the various parts without affecting other subsystems.

 6

Figure 2 shows the general layout of the FAME SOC System from an implementation
point of view.

M
O
C

Comm
Layer

Ingest
Staging

Off-Line
Archive

Archiving

Ingest

Primary
Storage

Primary
Backup

BackupQuicklook

Data
Access

Science
Data

Processing

Science
Data

Products

Executive

Figure 2. SOC High Level Architecture

The primary difference between the conceptual design and the High Level Architecture is
the addition of the Communications Layer and the Data Access layer. The
Communications Layer is added in order to centralize all communications with the MOC.
This way, if the communication ICD changes in some way, the actual processing is
insulated from the effect. Additionally, while the Ingest and Quicklook processes will be
tightly coupled with the Primary Storage, by putting a Data Access layer between the
Science Data Processing and the actual data, we allow the actual data storage system to
change without impacting the Science Data Processing code.

4. General Plans

4.1. Process Overview
The FAME Software Development Process is derived from industry standard object-
oriented modeling, design and development guidelines. FAME will use the Rational
Rose product for system modeling and design and the TBD programming language for
development.

The process consists of five phases:

1. System Analysis and Modeling
Analyze the user community's ideas for what is needed from the system (user
stories) in order to produce use cases and system requirements. Use these
requirements to develop the models for system conceptualization, technical

 7

architecture and preliminary design. This phase ends at Preliminary Design
Review (PDR).

2. Detailed Design
Expand the preliminary design by providing detailed descriptions of the
individual modules to be produced. This design must fully specify the
software to the level where individual software developers can complete the
coding of the system. This phase will include the development of test
procedures, test data and expected results to be used in the next phase. This
phase ends at Critical Design Review (CDR).

3. Development
This is the actual coding and integration of the system. During this phase, off-
the-shelf systems are integrated with custom coded modules. This phase ends
with the delivery of a working version of a fully functioning system for
testing.

4. System Test and Delivery
Test the completed systems against the final set of requirements. Review and
revise as needed in order to satisfy all system requirements for that version.

5. Production and Maintenance
Transition the system into the production environment and process the live
instrument data. Analyze, accumulate and address problems that arise during
production. Due to the nature of discovery experiments such as this, we
expect a high number of post-launch modifications. These modifications are
expected to have the highest impact on the non-launch-critical facets of the
system.

4.2. Development Plans

4.2.1. Development Methods
Because of the skill mix present in the FAME development team, there will be several
development methods in play. Using an object-oriented approach allows the use of state-
of-the-art design and development tools and methods, however the learning curve
associated with it is prohibitive on the projected FAME timeline. During prototype
development, exploration will be done using a variety of languages, including C, C++,
Fortran and IDL. The target language for production development will be C and C++.
While a single language is preferable, the choice of these two allows for the varying
levels of expertise in the FAME development community.

4.2.2. Standards

4.2.2.1.Coding Standards
The FAME project will use coding standards as defined in the FAME Software Coding
Standards described in Appendix A. These standards were adapted from the original
FAME Software Management Plan. The standards are written specifically for C++
coding. We have chosen this standard since it can be used with both C and C++ code.
The prototypes will be developed in several languages, however we anticipate the final
version of the code to be in both C and C++.

 8

4.2.2.2.Data Format Standards
The main data coming from the MOC (and that data synthesized by the simulator) will
conform to the FITS data format standards. The initial data model is the one developed
by USNO Flagstaff and will be revised as needed. Data formats internal to the SOC are
TBD.

4.2.3. Software Reuse

4.2.3.1.System Modularity
The SOC system components will be highly modular. This means there will be well-
defined interfaces between the modules, a high level of data hiding (insulation of one
module's data from access by other modules) and the universal use of "get" and "set"
operations for data access. This means Module B will only be able to access Module A’s
data by asking for it through a “get” operation; likewise Module A’s data may only be
changed through use of a “set” operation. In this way, each module has absolute control
over its own data.

4.2.3.2.Data Layer Interface
Because of the large volume of data being generated by FAME as well as the desire to
have instant access to all members of the dataset we will be evaluating several mass data
storage technologies. In order to eliminate the effect of trying various technologies on
the bulk of the processing software, we will isolate the science data processing software
from the actual data store by creating a data layer interface. Only this data layer will
access the actual data store. This data layer will have a constant interface specification
which will allow the developers to design to a fixed standard rather than having to recode
or redesign every time the physical data store changes.

4.2.3.3.Planning for Software Reuse
While there are no specific requirements for software reuse, the documentation and
modularity standards in place on the project will allow for a high potential for use on
future projects.

4.2.4. Handling of Launch Critical Requirements

4.2.4.1.Security
The security requirements for the FAME SOC can be found in sections TBD of the SOC
Systems Requirements Document.

4.2.4.2.Data Integrity
The data integrity requirements for the FAME SOC can be found in sections 3.2.2,
3.11.2, and TBD of the SOC Systems Requirements Document. In general, the FAME
SOC is required to maintain an archive of the data as received by the SOC as well as
archives of science data products as they become available. The SOC is also required to
check the data for consistency and fidelity to ensure data is not being corrupted at some
stage of the process.

 9

4.2.4.3.Ingest Stability
The ingest stability requirements for the FAME SOC can be found in sections 3.2.1, and
TBD of the SOC Systems Requirements Document. In general, the FAME SOC will
provide a robust data ingestion process which will consistently accept new data and
ensure that data is not corrupted or lost.

4.2.4.4.Data Quick-Look
The system shall provide a facility for real-time processing of the full dataset. This will
allow the FAME science team to check the instrument for various status and health
metrics. See the FAME SOC System Requirements Document for detail.

Quick Look will be prototyped before PDR so that we will have a high degree of
confidence in our ability to satisfy these requirements.

4.2.5. Hardware Resource Utilization
All hardware purchased for and used by the FAME SOC will be used exclusively by the
FAME SOC for FAME data processing and archival.

5. Detailed Software Development Plans

5.1. Project Planning and Oversight

5.1.1. Software Development Planning
FAME SOC software development will follow a hybrid structured / object oriented
methodology. This hybrid methodology is the result of the desire to use industry best-
practices and the constraints of manpower and skill mix. Object oriented methodologies
are best suited for complex systems that may require modification as it progresses.
Structured methodology is more intuitive and more readily understood by members of the
FAME development team. Planning for the development process will consist of the
following steps and milestones:
 Pre-PDR:

1. Study the user stories and science requirements to determine the list of
system level requirements,

2. Determine the rough scope of the development effort,
3. Evaluate options for system architecture,
4. Research the marketplace for appropriate off-the-shelf systems and

CASE tools to facilitate system delivery.
 At PDR:

1. Provide the list of software products to be developed (see Preliminary
Design Document),

2. Provide an overall schedule of major system milestones (see Section
6),

3. Provide a set of requirements which drive development planning
decisions (see SOC System Requirements Document),

 10

4. Provide a description of the processes which will bring about a
successful software development effort (this document).

Pre-CDR:
1. Perform detailed system design,
2. Resolve design level TBDs.

At CDR:
1. Provide the detailed design of the SOC system,
2. Provide the schedule of delivery of specific system components.

5.1.2. Unit Test Planning
Unit testing is that level of test carried out by the developer when creating an individual
module of code. It tests to insure that the module behaves deterministically and correctly
for a given set of input conditions and exits gracefully in cases where errors occur.
FAME will employ the use of built-in unit testing whereby every code module will have
tests built in that allow future testers to perform some level of unit testing without the
original developer being involved. Built-in unit testing also allows for streamlined
regression testing if changes are made to related modules later on.

5.1.3. Integration Test Planning
Integration test will be performed on various levels of integration. As units are made
available that address larger system functionality, they will be assembled and run through
pre-determined test sequences to make sure they work as a unit.

An example of integration of sub-components is joining the data storage subsystem, the
data retrieval layer and any of the components which require the retrieval of information.
This integration level test allows the team to isolate larger and larger sections of the final
product in advance of system test.

5.1.4. System Test Planning
System Test provides the opportunity to run an "end-to-end" test on the entire system
using set data inputs and given a set of expected results. It tests the actual functionality
of the system in an environment that is, ideally, an exact duplicate of the operational
environment. The goal of System Test is to identify problem areas that only arise when
the system is run end-to-end. These are often operational and load balancing issues, but
it may show software flaws as well.

Depending on resources available at the time, as much as possible, the FAME SOC
System Test will be conducted by personnel who have no vested interest in passing the
test (i.e., not the FAME SOC software team). If sufficient resources are not available, the
test will be conducted by the software team, but monitored by a representative of the user
community acting as Quality Assurance Monitor. The software team must be available to
the testers to support configuration, troubleshooting, fault assessment and suggestions for
remediation.

 11

5.1.5. Transition to Operational Environment
Once the software has passed System Test, it will be transitioned to the operational
environment. This will be done by extracting the exact version of the source code for the
software that had been tested, including make files, database definition scripts, data
loading scripts, and any other files required to create the complete executable version of
the system in the operational environment.

5.1.6. Management Review
The FAME Program Manager will review the test status at a (period TBD) Test Review
Meeting. State of new, outstanding, and closed Software Problem Reports will be
discussed.

5.2. Software Development Environment

5.2.1. Software Engineering Environment
FAME will use the Rose modeling and design product by Rational Software. Rose
provides the tools and guidance needed to bring about a full object oriented design and
implementation. It also provides round-trip engineering features – meaning it will create
code from a design, as well as provide a design from code already written. This will help
ensure that the developed code doesn’t deviate from the initial design (by comparing as-
built design with baseline design). Non object-oriented elements of the system will be
incorporated into the design using OO “wrappers” around structured code.

5.2.2. Software Test Environment
Software Test Environment will be set up to be as similar to the production environment
as possible. Similar hardware with identical capacities as well as identical operating
systems is the ideal environment.

The use of a software test tool will be evaluated during the detailed design phase of the
project.

5.2.3. Software Development Library
The software development library will contain all specification, design, and control
documents required for development. These include the FAME SOC System
Requirements, the MOC-SOC ICD, The Operational Concept Document, the Data
Model, and any other documents used by the team. These documents will be kept in a
‘read-only’ state and will be changed only via the normal Configuration Management
procedures.

5.2.4. Software Development Files
All source files, make files, data definition files, and any other files needed for
development will be kept in a configuration controlled repository which will be
maintained by the Configuration Manager or a designee.

 12

5.3. Requirements Analysis

5.3.1. Analysis of User Input
The user community for the FAME SOC includes the scientists and engineers at the SOC
facility at USNO. Input from all potential users of the system is valuable in determining
the full set of specifications for the system. These users will be interviewed by the
systems designers to determine the set of cases in which the system will operate. These
"user stories" will be the fundamental material to be used in synthesizing the system
requirements.

5.3.2. Operational Concept
The FAME SOC System will be operated at the SOC facility at USNO. The basic
concept of the system is:

1. to accept the data stream from the ground station,
2. archive the data,
3. process the data (low-res) for instrument health and data quality indicators, and
4. process the data (high-res) for the final science data products.

The full description of the SOC Operational Concept is found in the SOC System
Operations Concept Document.

5.3.3. System Requirements
The System Requirements are specified in the FAME SOC System Requirements
Document.

5.4. System Design Approach
The system will be designed using object oriented methodology. Once high level
science-case objects and processes have been identified, these will be translated into a
system architecture design. The system architect will then allocate requirements to the
Hardware, Software and Operations systems. Trade-offs will be made at this time to
determine the best manner in which to satisfy system level requirements.

5.5. Software Requirements Analysis
Once the requirements that are specific to the software system are identified, they will be
expanded to form the set of technical specifications for the design of the software system.
Trade-offs will be revisited to ensure that the requirements are being addressed in the best
and most efficient manner. Once the system engineer has determined the full set of
requirements, it will be reviewed by the Configuration Control Board (CCB)(see Section
5.11.1). The CCB will advise the Project Manager as to the completeness and accuracy
of the software requirements. The Project Manager must approve the software
requirements specification before design may commence. The initial software
requirements specification will be available for review at Preliminary Design Review
(PDR), with revisions expected between PDR and CDR.

 13

5.6. Software Design Approach

5.6.1. Design Decisions
Parts of the FAME SOC system will evolve over time. We anticipate that the order of
processing as well as the demands on the data store will change, and we may not have all
of the parameters in hand at the time of initial design. The CCB exists to review and
advise on design decisions that might effect the overall system.

Decisions regarding the design of the system will be made according to the impact of the
decision. It is the job of the System Engineer and the Software Development Manager to
determine the proper level of decision-making. Decisions which directly effect the
satisfaction of a system requirement must be approved by the Program Manager.
Additionally, if the fulfillment of a particular requirement is causing an excessive amount
of impact on schedule or cost, the necessity of that requirement must be discussed at the
CCB for potential change or removal.

5.6.2. Detailed Design
There are many ways to deliver detailed design. In recent years, the industry trend has
been toward an object oriented approach to design. The advantages of this method are
the high level of modularity and maintainability of the code as well as an increased
ability to isolate and fix code errors.

The detailed design will follow the object oriented methodology. Detailed design will
include the object diagrams, state diagrams and event traces (how and when the various
objects communicate and pass control) as needed to allow the developers to produce the
final system. A schedule for completing detailed design is provided in Section 7.

5.7. Implementation and Unit Testing

5.7.1. Development
Development of the FAME SOC will be conducted at the USNO facility in Washington,
DC, while development of the Simulator will be at the NOFS facility in Flagstaff, AZ.
Development of the SOC will be in C++, while the Simulator will be TBD.

5.7.2. Unit Testing
Each production module will be tested by the engineer responsible for coding it. Unit
testing will consist of:

1. Identification of input test data (both valid and invalid data) to test
a. Satisfaction of requirements
b. Correct functioning of the unit,

2. Identification of associated expected outputs,
3. Coding of built-in test procedures,
4. Running the test,
5. Evaluating results of valid data inputs,
6. Evaluating results of invalid data inputs (error checking and handling).

 14

The Quality Assurance manager will verify unit testing. Unit testing will be considered
successful once all test (including error) conditions are successfully met. Once a module
has been successfully tested, it will be checked into the Configuration Management
system and will not be changed without a change request approved by the Configuration
Manager.

5.7.3. Revision and Retest
If revisions are required of the module, i.e. a change request has been approved by the
Configuration Manager, the engineer will make the change and rerun the entire unit test
suite before returning the module to the CM repository. Full compliance will be verified
by the Quality Assurance Manager.

5.8. Integration Testing

5.8.1. Selection of Units for Integration
During design phase, the software team will identify subsystems that should be tested at a
level in between unit test and system test. These groupings will be coded in a timeline
such that they will be able to be integration tested while other coding activities continue.
During the coding of a grouping, the system engineer will determine a set of test cases
that are appropriate to test its functionality.

5.8.2. Integration Testing
Integration testing will follow the same basic process as Unit Testing, except that there
are no built-in test routines for Integration Test:

1. Identification of input test data (both valid and invalid data) to test correct
functioning of the grouping,

2. Identification of associated expected outputs,
3. Running the test,
4. Evaluating results of valid data inputs,
5. Evaluating results of invalid data inputs (error checking and handling).

The Quality Assurance manager will verify Integration Testing. Integration testing will
be considered successful once all test (including error) conditions are successfully met.

5.8.3. Revision and Retest
If errors are found during Integration Test, the culpable module(s) will be recoded, Unit
Tested and the Integration Test will be rerun.

5.8.4. Recording Integration Test Results
Once Integration Test is successful, the Quality Assurance Manager will note the
successful completion in the QA log.

 15

5.9. System Testing

5.9.1. Independence in System Test
It is highly desirable to have a completely independent entity conduct System Test. This
insures that there is no bias when conducting the test and that someone not familiar with
system operation can still make the system work. It also helps to insure that proper
documentation has been supplied and that the system is ready for delivery.

System test on the FAME SOC will be conducted by TBD.

5.9.2. Test Environment
The test environment will be identical to the production environment. This environment
is TBD, but will be identified during the system design phase and will be presented at
CDR.

5.9.3. System Test Preparation
In preparation for System Test, the following procedure will be followed:

1. Preparation of the Test Environment (hardware setup, operating system setup
and test, installation of ancillary software products and networking, etc.)

2. Acceptance of the Test Environment (checked by system engineer and quality
assurance)

3. Extraction of the Test Code from the CM Repository
4. Extraction of Test Data from the CM Repository
5. Installation of Test Code and Data on the Test Environment.

At the end of this procedure, the system will be handed over to the System Test team for
performance of the test.

5.9.4. System Test Performance
System Test will follow the same basic steps as for Integration Test, however System
Test will consist of many separate test procedures, most of which will be derived from
the Integration Test procedures.

1. Identification of input test data (both valid and invalid data) to test correct
functioning of the system,

2. Identification of associated expected outputs,
3. Running the test,
4. Evaluating results of valid data inputs,
5. Evaluating results of invalid data inputs (error checking and handling).

System Test will identify two types of error:

1. Non-Critical Error – An error which will allow the continuation of a test
procedure without recoding.

2. Critical Error – An error which necessitates immediate recoding of part of the
code in order to continue any testing.

 16

5.9.5. Revision and Retest
A particular procedure may encounter several Non-Critical Errors and all should be
addressed before rerunning the test. A Critical Error will cause the test to halt and will
require recoding and retesting before the System Test can resume.

It is important to note that recoding can take place while other System Tests are run, but
System Test will only be considered completed when all tests are run end-to-end without
error.

5.9.6. Recording System Test Results
The Quality Assurance Manager will record all completed tests in the QA log, as well as
recording all errors.

5.10. Software Use Preparation

5.10.1.Version Description
There are two planned versions of the SOC software. The first is the Initial Operational
Capability Version (v1.0) which will include the functionality to satisfy the Launch
Critical Requirements described in Section 4.2.4 of this document. The second version is
the Full Operational Capability (FOC) Version (v2.0) which will include the functionality
to satisfy all requirements described in the FAME SOC System Requirements Document.

5.10.2.User Manuals
The FAME SOC development team will provide user manuals. These manuals will cover
the operation of the FAME SOC system at a level which can be understood by someone
with a general understanding of the operating systems in use and of the FAME mission.
These user manuals will provide step-by-step operations procedures and
recommendations for troubleshooting. They will be designed specifically for in-house
use and not for general distribution.

5.10.3.Installation
The system will be installed at the USNO FAME SOC facility on the operational systems
once it has been accepted by the project. The FAME SOC System development team
will perform the installation and provide initial operations support.

5.11. Configuration Management

5.11.1.Configuration Identification
The FAME Configuration Manager (CM) will govern the configuration of the system.
The CM will have the authority to allow changes to the design and to the code once it has
been delivered. The CM will convene, at their discretion, the Configuration Control
Board (CCB) which will advise the CM on configuration decisions.

 17

5.11.2.Configuration Control
The development team will employ a professional configuration management system for
maintaining controls on the design, documentation and code. Developers of these
products must register all changes once the product has been placed under configuration
control.

There are many systems available to help enforce configuration control. A candidate
solution would be to use a commercial configuration management product such as CVS
or PVCS to manage the actual tracking of changes and a problem reporting system like
Cygnus' GNATS software to manage the trouble ticketing.

In order to reduce the chance that the CM process will hamper the efforts of the design
and development effort, the Configuration Manager will review problem reports on an as-
needed basis, convening the CCB at least once every week during production to review
progress.

5.11.3.Configuration Auditing
The CM will periodically audit the configuration of the system by reviewing the change
logs and design to insure the code is being developed to the specifications. The CM may
delegate this responsibility. This audit will be to make certain that only those changes
that are authorized by the CM are actually being made.

5.11.4.Version Control
Version Control will be monitored by the CM or their designee. There are currently two
major versions of the FAME SOC system envisioned, IOC and FOC. There will be many
sub-releases of the software for test purposes. These will be numbered as decimal
versions of the major releases as follows:

Pre IOC release v0.01 through v0.99
IOC release v1.00
Post IOC, Pre FOC release v1.01 through v1.99
FOC release v2.00
Post FOC release v2.01 and up

5.12. Quality Assurance

5.12.1.Independence in Quality Assurance
The Quality Assurance function will be satisfied in two ways.

1. Review of design and code in progress. This will consist of peer review
(design/code walkthrough) and review of code for adherence to standards and
application to requirements.

2. Independent Quality Assurance Audits. Once code is delivered into the test
environment, and independent QA entity will check the code for standards
compliance and satisfaction of CM requirements.

 18

Independence of Quality Assurance will be satisfied by having the Independent Quality
Assurance Audits done by someone who is not intimately involved in the development
process, but familiar with it. In this way, they will not feel the need to bias their
assessment of the compliance to QA standards.

5.12.2.Quality Assurance Evaluations
The following reviews will be performed at various stages in the design and development
process:

1. Peer Design Reviews. In the peer design review, the designer will present
their work to the other designers on the team. The design will be reviewed
for:

a. Completeness
b. Adherence to Standards
c. Satisfaction of Requirements
d. Alternative Methods

2. Peer Code Walkthroughs. In these informal discussions, the coder will
present their work to the rest of the team. The code will be reviewed for:

a. Accurate Reflection of Design
b. Adherence to Standards
c. Alternative Methods

3. Independent Quality Assurance Audits. These audits, performed by an
independent entity, will review:

a. Adherence to Standards
b. Compliance with CM Procedures
c. Successful Completion of Unit Testing

5.13. Corrective Action

5.13.1.Software Problem Reports
SPRs may be generated by anyone involved in test or use of the system. SPRs will be
maintained by a tracking system such as GNATS. SPRs will contain information on the
nature of the problem, when the problem was encountered, who generated the SPR and
recommendations for resolution of the problem.

5.13.2.Corrective Action Management
SPRs will be reviewed by the software manager. The software manager will assess the
SPRs for difficulty, resolution action and priority. The CM will be the final authority on
all corrective actions. Once the CM has approved a corrective action, the software
manager will schedule time and resources commensurate with the difficulty and priority
level assigned to the action.

5.14. Reviews

5.14.1.Technical Reviews
The FAME SOC system development team will conduct periodic technical reviews.
These reviews will be open to all FAME personnel. At these reviews, the team will

 19

present the technical progress made since the previous review. Attendees will be invited
to comment on progress and advise on plans. These technical reviews will be held TBD.

5.14.2.Management Reviews
The FAME SOC management team will conduct periodic management reviews. These
reviews will be open to TBD. At these reviews, the management team will present the
project status through schedules and delivery milestones. Additionally, schedule
projections and upcoming events will be presented for review and comment. These
management review will be held TBD.

5.15. Other Activities

5.15.1.Risk Management
There are three aspects of risk management – cost, schedule and technical. In software
projects, cost risk is almost always driven by schedule performance and this appears to be
the case with the FAME SOC. Schedule risk is typically driven by lack of understanding
of the technical solution at design time. Therefore, it is our strategy to address overall
risk by aggressively seeking to minimize the technical risk on the project.

The high degree of precision and accuracy desired from the FAME data requires the
conceptualization and production of cutting edge algorithms for spatial positioning. In
order to minimize the potential risk of this discovery of new ideas, the FAME team is
currently engaged in prototype development of the most critical phases of the processing.
These prototypes will be used as the basis for the production code once a clear process
has been determined, tested and approved.

There are two types of technical risk:

1. Algorithm Uncertainty – we lack the understanding of exactly how the data
will be processed in order to reach the science objectives. This is being
addressed by prototyping of these processes, beginning with the highest risk
ones. A schedule for this prototyping effort can be found in Appendix B of
this document.

2. Technical Uncertainty – we will not understand the details of data storage and
retrieval until the systems are in place and the actual functioning of the
algorithms is known. This is being addressed by keeping the data storage
separate from the actual algorithms thereby allowing the flexibility to "tweak"
the storage solution as the system becomes more mature.

5.15.2.Security
The FAME SOC will be isolated from all network access other than the dedicated link to
the MOC. This will all but eliminate the risk of communications security breaches.
More detailed operational security measures will be determined as those requirements are
identified.

5.15.3.Coordination with Associate Developers
TBD

 20

6. Schedules
Appendix B shows the schedules for the prototype effort and for the detailed design
effort.

7. Project Organization and Resources

7.1. Project Organization

7.2. Project Resources

7.2.1. Personnel
The FAME SOC software staff will be made up of the Software Manager and four
developers. The exact skill mix of the developers will depend on decisions made during
the design process. Some combination of algorithm expertise and C++ expertise will be
required in order to successfully complete the project.

7.2.2. Facilities
The FAME SOC will be set up in Building 56 at the US Naval Observatory.
Development of the SOC will take place at USNO/DC. Development of the simulator
will be at USNO/Flagstaff.

7.2.3. Equipment
The FAME SOC will utilize equipment purchased for and dedicated entirely to the
FAME SOC. The current proposed configuration is an array of Intel based multi-
processor servers running LINUX connected via high-speed Ethernet with each other and
with a RAID array of robust storage. UPSs will provide clean, consistent power and
backups will be kept of all data stores on DVD media.

8. Notes

 21

9. Appendix A.

Coding Standards for C++ Development

9.1. Introduction
These standards represent the formats to be used in coding C++ on the FAME SOC
project. Code will be inspected as part of the QA process to ensure that these standards
have been followed.

9.2. Variables

• All local variables will be lowercase and use uppercase letters to separate words
within the name (e.g. myBlueHeaven).

• Class names will begin with an uppercase letter (e.g. BinaryStar).
• The wider the scope of the variable, the more descriptive it should be.
• Don’t use underscores in variable or function names.
• Don’t name variables with a leading underscore as this is used by systems to

indicate non-standard extensions.
• Variables should not be reused for different purposes within the same routine.
• Avoid the use of pointers – they're confusing and often lead to unmaintainable

code. Use references instead of pointers if possible. A reference cannot be
changed to point to another object so that you know it always points to the same
object.

• Avoid using the unsigned types if you don’t have to. The ‘unsigned’ keyword
clutters function declarations and has no benefit if the extra headroom isn’t
required.

• Never use global variables in projects larger than trivial. You can’t tell where or
when they are used and they might have initialization sequence problems. Try
using static class members and/or a singleton class to manage widely used
variables.

• Constants should be defined in the smallest scope possible, for example if a
constant is only used in one function it should be defined in the function.

9.3. Comments
• Clear code is preferable to well-commented messy code. Every effort should be

made to make code clear through good design, simplicity, good naming and
layout. Comments are definitely required where code is not clear.

• Avoid compulsory comments like author, date, class names, function names, and
modification lists, as they get outdated. We will use a CM tool to insert these as
needed.

 22

9.4. Files
• Every class will have a separate source file and header file that matches the name

of the class. For example class ProcessData should be defined in ProcessData.h
and be located in ProcessData.cpp.

• The extension of the implementation file (eg .c .cc .cpp .cxx) will depend on your
compiler (.cpp is the most likely).

• Use precompiled headers. This can greatly improve compilation speed, but also
provides a consistent place to #include all system and library headers, so that they
don’t have to be included anywhere else.

• Avoid adding a full path or relative path to #include statements. Instead add the
directory or root directory to the include directories list in the makefile. For
example have “…/path/libraries/” as an include directory and have #include
"LibrarySubDir/filename.h" in the precompiled header.

9.5. Clear Code Style
• There should be only one operation per line. For example the commonly seen line

if (doSomething()== false) ...

should be split into two lines.

result = doSomething();
if (result == false) ...

• Avoid using 'goto'.
• Functions must be explicitly typed (including void).
• Use explicit type casting.
• Do not use char variables in the place of int variables.
• Do not use operations in argument lists.
• Do not exceed 80 characters per line (use continuations)

9.6. Formatting & Layout
• Layout should be written for maximum code readability.
• Use #include <filename.h> for library & system headers.
• Use #include “filename.h” for non-system headers.
• Don’t check equivalence backwards .

e.g.: if (false == variableA)
It may be safer but it is more difficult to read.

• Each variable declaration needs a line of its own.
• If the variable declaration is a pointer, place the star next to the type, not the

name. Eg char* p not char *p;
• Header files should use the '#ifndef/#define/#endif' mechanism to prevent

multiple inclusions. The defined name should be of the form _Filename_H.
• Macros (if you use them) should be in upper case.

 23

• Use spaces instead of tabs in a source file.
• Functions and variables should be mixed case and begin with a lower case letter.
• Place a space between operators such as + and ||.
• Use parentheses wherever they may remove possible ambiguity in the minds of

the reader.
• Matching braces (‘{‘ ’}’) should line up vertically and be on their own horizontal

line.
• Place single spaces immediately after commas in routine parameter lists.

9.7. Safe C++ coding
• Routines and their parameters should be declared 'const' wherever possible.
• Use the ‘assert’ macro to test assumed or expected conditions.
• Classes that will be inherited from should have a virtual destructor.
• If a class defines either an assignment operator or a copy constructor it should

define both.
• Don’t throw objects allocated from the heap. You don’t know if they will be

freed.
• If you catch an exception, make sure you have a default catch(...)so that all

exceptions are caught at that point.
• If you are writing a library or subsystem that will be used by a different project, it

must be in a namespace.
• Use set/get functions instead of public variables. If you have a getCount()

function instead of a public member you can add a breakpoint to the function to
see when it is being used. If you have a lot of public variables, consider a
structure without code and separate the code from the data.

9.8. Reducing C++ complexity
• Poorly written C++ can be very difficult to understand. It can be simplified by not

using many of the features of C++: some of which are leftover from C, some
which are poorly understood by many developers and some which are
unnecessary. Keep it simple. Elegant design is always better than complex code.

• #ifdef/#endif should not be used in a function to make it portable. Use wrapper
classes to cover platform-dependent code.

• Avoid macros. Always use constants or functions if possible as they are clearer
and are more easily understood by software tools such as debuggers and source
browsers.

• Avoid c library functions which are superceded by modern objects, e.g. use string
class methods rather than strcmp, use streams instead of c runtime functions.

• Always try to use STL classes over proprietary or third party classes.
• Use if statements instead of ?:.
• Avoid excessive use of templates. Templates are excellent for utility classes such

as collections but abstract base classes are usually a better design and are clearer
to understand.

• Avoid operator overloading. Using a method on an object is much clearer and
easier to follow than a called operator.

 24

9.9. Portability
• Try to avoid platform specific API calls. This will depend on the type of

application, but a generic program core should call objects that can
polymorphically adapt to different platforms.

• Avoid pointer arithmetic.
• Never assume a pointer length is a given length, and then don't use it anyway.
• Use long instead of int.

 25

10. Appendix B

10.1. Pipeline Prototype Schedule

10.2. Design Schedule

	Scope
	Identification
	System Overview
	Document Overview
	Relationship to Other Plans

	Referenced Documents
	Overview
	General Plans
	Process Overview
	Development Plans
	Development Methods
	Standards
	Coding Standards
	Data Format Standards

	Software Reuse
	System Modularity
	Data Layer Interface
	Planning for Software Reuse

	Handling of Launch Critical Requirements
	Security
	Data Integrity
	Ingest Stability
	Data Quick-Look

	Hardware Resource Utilization

	Detailed Software Development Plans
	Project Planning and Oversight
	Software Development Planning
	Unit Test Planning
	Integration Test Planning
	System Test Planning
	Transition to Operational Environment
	Management Review

	Software Development Environment
	Software Engineering Environment
	Software Test Environment
	Software Development Library
	Software Development Files

	Requirements Analysis
	Analysis of User Input
	Operational Concept
	System Requirements

	System Design Approach
	Software Requirements Analysis
	Software Design Approach
	Design Decisions
	Detailed Design

	Implementation and Unit Testing
	Development
	Unit Testing
	Revision and Retest

	Integration Testing
	Selection of Units for Integration
	Integration Testing
	Revision and Retest
	Recording Integration Test Results

	System Testing
	Independence in System Test
	Test Environment
	System Test Preparation
	System Test Performance
	Revision and Retest
	Recording System Test Results

	Software Use Preparation
	Version Description
	User Manuals
	Installation

	Configuration Management
	Configuration Identification
	Configuration Control
	Configuration Auditing
	Version Control

	Quality Assurance
	Independence in Quality Assurance
	Quality Assurance Evaluations

	Corrective Action
	Software Problem Reports
	Corrective Action Management

	Reviews
	Technical Reviews
	Management Reviews

	Other Activities
	Risk Management
	Security
	Coordination with Associate Developers

	Schedules
	Project Organization and Resources
	Project Organization
	Project Resources
	Personnel
	Facilities
	Equipment

	Notes
	Appendix A.
	Introduction
	Variables
	Comments
	Files
	Clear Code Style
	Formatting & Layout
	Safe C++ coding
	Reducing C++ complexity
	Portability

	Appendix B
	Pipeline Prototype Schedule
	Design Schedule

